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Abstract

Though not discussed extensively in the literature, it is known among workers in impact and penetration dynamics,

e.g. the CTH analysis and development team at Sandia National Laboratories, that curvature of thin plates has a

minimal effect on the penetration hole diameter due to a hypervelocity impact. To understand why curvature introduces

a minimal effect on penetration hole size we extend a flat plate penetration hole diameter relationship (De Chant (2004a)

Unpublished manuscript; De Chant (2004b) Mechanics of Materials, in press) to include the effect of body curvature.

The effect of the body curvature on the hole diameter is shown to scale according to the dimensionless plate thickness to

radius of curvature of the body i.e. h=R, which is typically small. Indeed for most problems where a single layer shell

(plate) can be meaningfully defined, the effect of curvature upon hole diameter is on the order of other uncertainties in

the problem, e.g. doubts concerning the appropriate equation of state and strength model, and is often, therefore,

negligible.
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1. Introduction

Hypervelocity plate penetration hole diameter prediction is of fundamental importance for a wide range

of military and space applications (Piektukowski, 1999; Corbett et al., 1996). Although many of the

applications associated with high-speed impact involve impact and penetration of cylindrical shells or pipes,

few researchers include the effect of body curvature in their models since experience indicates that body

curvature has a minimal effect on penetration hole size. To gain a sense of the type of problem where

curvature is fundamental to the geometry of a problem, but are unclear as the effect curvature may have on

penetration hole behavior, we consider an example computation performed using CTH (McGlaun et al.,
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Nomenclature

Cf hydrodynamic skin friction coefficient

cwave material sound speed

c1, c2, c3 integration constants

d projectile diameter

dhole finite thickness plate hole diameter

f ðyÞ ‘‘y’’ varying similarity separation function

h plate thickness

m hydrodynamic boundary layer exponent
R radius of curvature

t time

u velocity in penetration direction

U projectile impact velocity

Ub Bernoulli velocity

us shear velocity

v transverse velocity

ycrit location of penetration hole edge from centerline
x penetration direction coordinate

y transverse directional coordinate

Yyield yield stress

a wave damping term; Cf=h
eh perturbation parameter, h=d
e curvature dependent term in ycrit equation; 1

U
cwaveð Þ�1=2R

hþ1
� e

m hydrodynamic kinematic viscosity

meff non-linear kinematic viscosity model; meff ¼ U=a
qproj projectile density

qtarg target density

w stream function
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1990; Bell et al., 2000). Fig. 1 provides a comparison between (a) a 1 cm diameter 6061-T6 aluminum sphere

impacting a 8 cm diameter, 0.23 cm thick hollow 6061-T6 aluminum sphere and (b) a 1 cm diameter

aluminum sphere impacting a 0.23 cm thick plate computed using the adaptive grid refinement AMR

version of CTH (Bell et al., 2000).

Though qualitatively we note that the penetration holes in Fig. 1 appear equivalent, it is not clear if this
equivalence is a quantitative result and, moreover, if it is a general trend.

To study this problem and answer these questions we propose to develop an extension to a closed form

analytical model developed by De Chant (2004a,b), and Appendix A, to include the effects of body cur-

vature on plate penetration hole size caused by high-speed impact. Our intention is to quantify the effect of

curvature on penetration hole diameter due to high-speed/hypervelocity impact of spherical projectiles into

thin plates. It is important to be able to explain why body curvature has a minimal effect, and determine

under what circumstances body curvature may become important. Use of a closed form analytical model is

useful in determining trends and sensitivities of a particular effect, since one can directly observe the effect of
a variable or parameter on the solution.

Following De Chant (2004a,b) and Appendix A the late time momentum conservation equation is

modified to include external pressure effects caused by the shape of the curved body, e.g. a curved plate.



Fig. 1. Symmetric (about x ¼ 0) impact of (a) a 1 cm diameter 6061-T6 aluminum sphere impacting a 8 cm diameter, 0.23 cm thick

hollow 6061-T6 aluminum sphere and (b) a 1 cm diameter aluminum sphere impacting a 0.23 cm thick plate computed using the

adaptive grid refinement AMR version of CTH. Impact velocity is 7 km/s.
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Self-similarity of the momentum equation is admitted as before, however, the relationship is no longer

homogeneous. The cross-stream flow equation is approximately solved to yield the late time penetration

flow velocity field. Numerical inversion of a transcendental equation derived from the cross-steam flow

solution gives a unique solution for the size of the curved plate penetration impact hole. The effect of
the body curvature is reflected by the dimensionless plate thickness to radius of curvature of the

parameter, h=R, which is naturally present in the transcendental equation. Several useful approximations

to the transcendental equation solution are provided which explicitly show the effect of the h=R
parameter and shows that curvature effects upon penetration hole diameter linearly scale with h=R. Thus
we confirm that for most problems where a single layer shell (plate) can be meaningfully defined, the

effect of curvature upon hole diameter is small, e.g. on the order of other modeling uncertainties, and is,

therefore, negligible.
2. Analysis

Development of plate penetration hole diameter model begins by considering the following 2-d gov-

erning differential equations (White, 1991):
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qt þ ðquÞx þ ðqvÞy ¼ 0

ut þ uux þ vuy þ
1

q
px ¼ meffðuxx þ uyyÞ

vt þ uvx þ vvy þ
1

q
py ¼ meffðvxx þ vyyÞ

ð1Þ
where the effective viscosity relationship is a generalized function of velocity and length scales which

is determined subsequently. A state relationship, e.g. p ¼ pðq; uÞ completes the system. The geometry
associated with Eq. (1) is presented schematically in Fig. 2.

Unfortunately the system given in Eq. (1) is unsteady, non-linear and multidimensional and, as such, is

not easily accessible using analytical methods. Further, we are interested in the late time, e.g. time inde-

pendent behavior of the impact problem; solving the time dependent problem (except to obtain late time

data) is not necessary nor desirable. Previously, De Chant (2004a,b) introduced a solution methodology

that effectively overcomes these problems. The method involves (1) solving a reduced (1-d) unsteady

equation for uðx; tÞ, (2) using the reduced to model the unsteady terms, e.g. ut in the more complex, original

equation and (3) solving the modified, now time independent, equation. Details of this analysis for a flat
plat (that corresponds to an infinite radius of curvature which is equivalent to a finite radius problem for

locations close to the stagnation point, i.e. x � 1 (see Fig. 2.)) are provided in Appendix A. In this paper,

we apply a method related to that described in Appendix A, but extend the analysis to be valid for larger

values of x.
Applying this methodology, see De Chant (2004a,b) and Appendix A for details, the modified system

describing the impact problem is written:
ux þ vy ¼ 0

� au2 þ uux þ vuy ¼ u
dUb

dx
þ u
a
uyy

ð2Þ
Fig. 2. Schematic of plate penetration impact problem.
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Notice that unlike the flat plate model presented in Appendix A, a geometry/curvature dependent, pressure

gradient term, e.g. udUb=dx is included in the formulation. This term follows by analogy with classical

boundary layer methods where the pressure gradient is related to the flow via an inviscid Bernoulli’s

equation. Since the pressure gradient term, udUb=dx will introduce a new length scale associated with the
geometry, i.e. the radius of curvature, a self-similar solution method as described in Appendix A will not be

possible. However, as before, a stream function variable, wðx; yÞ where u ¼ ow=oy, v ¼ �ow=ox is defined

which satisfies continuity and gives the single differential equation:
�aðwyÞ
2 þ wywxy � wxwyy ¼ wy

dU
dx

þ
wy

a
wyyy ð3Þ
Further, we recognize that v � U thus, jwxj � 1 and the term
wxwyy

wy
can be neglected. A more formal

statement of this relationship implies that w ¼ Uy þ eh~wðx; yÞ þ � � �Oðe2hÞ, where eh is a small parameter

corresponding to dimensionless plate thickness, e.g. h=d, see Van Dyke (1975). The approximate expansion

is thus only valid for thin plates where u � U � 1 and v � 1 (for very thick plates the flow field would be

characterized by u � v � Oð1Þ, this condition corresponding to a true stagnation point flow, see White

(1991)).
�a2~wy þ a~wxy ¼ a
dUb

dx
þ ~wyyy ð4Þ
Several comments concerning Eq. (4) and its derivation are appropriate. The development of Eq. (4)

differs from that given in Appendix A in that the term
wxwyy

wy
is neglected rather than modeled. Thus the final

solutions achieved by solving Eq. (4) will be analogous to those in Appendix A, but formally different. The
formulation of Eq. (4) should also be considered more approximate than the derivation given in Appendix

A, however, for the purposes of this development where the focus is on the effect of curvature, Eq. (4) may

be considered completely adequate. Notice, that the tilde designation is subsequently suppressed for

economy of notation.

Although Eq. (4) cannot be self-similar due the presence of the term dUb

dx and, therefore the separable self-

similar equation used in Appendix A cannot be achieved, we can derive a non-similar solution based upon a

powers series in ‘‘x’’ where the coefficient associated with each power is self-similar. There is a direct

analogy between this proposed methodology and with boundary layer flow in the presence of a pressure
gradient, such as flow over a cylinder, Schlicthing (1979).

Using the functional form of the self-similar equation derived by De Chant, i.e. w ¼ Ue�axf ðyÞ we write
the non-similar expression:
w ¼ Uð1� axþ � � �Þðf0ðyÞ þ xf1ðyÞ þ � � �Þ þ Oðx2Þ ð5Þ
which permits computation of the stream function terms in Eq. (4). However to solve Eq. (4), the non-

homogeneous term, dU=dx must be expressible in terms of a power series as well. Consider for example,

impact into a cylindrical shell. Following Schlicthing (1979) one finds that the flow UbðxÞ is given as
Ub ¼ 2U sin
x
R

� �
¼ 2U

x
R
þ � � �Oðx2Þ ð6Þ
Substitution of Eqs. (5) and (6) into the simplified ‘‘u’’ momentum equation, e.g. Eq. (4) (recall that the
continuity equation is automatically satisfied by the stream function definition) and collecting terms in

powers of ‘‘x’’ gives
f 000
0 þ 2a2f 0

0 þ 2
a
R
� a2 ¼ 0þ OðxÞ þ � � �

f 000
1 þ 2a2f 0

1 ¼ 0þ Oðx2Þ þ � � �
ð7Þ
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Eq. (7) is the basic differential equation for the curved wall impact problem and presents Oð1Þ and OðxÞ
solutions. The lowest order relationship contains the most important information, the OðxÞ relationship

being trivial (a homogeneous differential equation with homogeneous boundary conditions). As was the

case for the self-similar flat plate problem, boundary conditions are f0ð0Þ ¼ 0, f 0
0ð0Þ ¼ 1 and f 0

0ð1Þ ¼ 0.
Solution of f 000

0 þ 2a2f 0
0 þ 2 a

R ¼ 0 yields
f 0
0 ¼ c1 cos

ffiffiffi
2

p
ay þ c2 sin

ffiffiffi
2

p
ay � 1

aR

f0 ¼
c1ffiffiffi
2

p
a
sin

ffiffiffi
2

p
ay � c2ffiffiffi

2
p

a
cos

ffiffiffi
2

p
ay � y

aR
þ c3

ð8Þ
where c1, c2 and c3 are integration constants to be defined via application of the boundary conditions.

Applying boundary condition we write the relationship
f0 ¼
1þ 1

aR

� �
ffiffiffi
2

p
a

sin
ffiffiffi
2

p
ay � y

aR
ð9Þ
From Eq. (9) and stream function/velocity relationships we write
w ¼ UðaRþ 1Þffiffiffi
2

p
aðaRÞ

sin
ffiffiffi
2

p
ay � y

aR

u ¼ wy ¼
UðaRþ 1Þ

ðaRÞ cos
ffiffiffi
2

p
ay � U

aR

v ¼ �wx ¼ 0þ Oðx2Þ

ð10Þ
Eq. (10) is the late time (time independent) solution for the velocity field associated with the penetration
of the thin plate with curvature as shown in Fig. 2. Notice, that Eq. (10) is analogous in form to the

relationships in Appendix A but differs in detail, as previously indicated, a consequence of the approxi-

mations used to achieve Eq. (4).

As in De Chant (2004a) the major goal, however, is not to describe the velocity field associated with the

plate hole penetration problem, but is to determine the size of the plate penetration hole. An estimate of this

value can be obtained from the late time ‘‘v’’ velocity field. Indeed, the definition of 1=2 the hole diameter

is the ‘‘y’’ location at which the late time velocity, v ¼ 0. Therefore, the roots associated with w ¼ 0, define

the critical y location (this follows from w ¼ Ue�axf ðyÞ rather than simply Eq. (4)):
w ¼ UðaRþ 1Þffiffiffi
2

p
aðaRÞ

sin
ffiffiffi
2

p
aycrit �

Uycrit
aR

ð11Þ
Alternatively we write the transcendental equation, sin
ffiffiffi
2

p
aycrit �

ffiffi
2

p
aycrit

ðaRþ1Þ ¼ 0 which gives the critical

location associated with maximum penetration hole size. For convenience we define,
ffiffiffi
2

p
aycrit � b. Recalling

that from the flat plate problem that a ¼ Cf=h we note that aR is proportional to the ratio of curvature to

the plate thickness, i.e. aR / R=h. Notice, that for aR � 1, implying, the second term in the transcendental

equation is small, that we recover
ffiffiffi
2

p
aycrit ¼ b ¼ p as computed for the flat plate case.

Following the previous model, the plate hole size is computed in a completely analogous manner, with

the exception the eigenvalue p, is replaced by the result of the transcendental relationship, b. Thus we write
dhole
d

¼ 1þ
ffiffiffi
2

p
b

h
d

� �
U

cwave

� �1=2 qproj

qtarg

 !1=2

ð12Þ
where b is the zero of the equation.
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sin b� 1

U
cwave

� ��1=2
R
h þ 1

b ¼ 0 ð13Þ
Eqs. (12) and (13) are the goal this paper. As expected from the form of Eq. (13), the effect of curvature is

exhibited by the term 1

U
cwaveð Þ�1=2R

hþ1
in Eq. (13). Defining 1

U
cwaveð Þ�1=2R

hþ1
� e, we can assess the effect of curvature

on the root of Eq. (13), i.e. b and compare to the flat plate value, i.e. e ¼ 0 and b ¼ p. The results of this

comparison are presented in Fig. 3.

From Fig. 3 it is apparent that there is an approximately linear relationship between root b and the

parameter e in the solution of sin b� eb ¼ 0. Though perhaps unexpected, that a linear relationship pro-

vides a reasonable approximation to the root, b, can be demonstrated by introducing the relationship
b ¼ pþ zðz � 1Þ, expanding Eq. (13) in Taylor series and neglecting all but linear terms. This gives
b � pð1� eÞ þ Oðe2; z2Þ ð14Þ

Eq. (14) is plotted in Fig. 3. Note that although Eq. (14) demonstrates solution linearity, that it is only

effective for en1, a restriction consistent with the simple Taylor series expansion used here.

Notice that by utilizing the regression relationship presented in Fig. 3 that a completely explicit form for

the penetration hole diameter in the presence of body curvature is obtained:
dhole
d

¼ 1þ
ffiffiffi
2

p
ð3:13� 2:66eÞ h

d

� �
U

cwave

� �1=2 qproj

qtarg

 !1=2

ð15Þ
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Fit Results

Fit 1:  Linear, Y=B*X+A
Equation:
Y = -2.66057 * X + 3.12854
Number of data points used = 6
Average X = 0.125
Average Y = 2.79597
Regression sum of squares = 0.30969
Residual sum of squares = 0.000480094
Coef of determination, R-squared = 0.998452
Residual mean square, sigma-hat-sq'd = 0.000120023

Effect of Curvature on 
Penetration Hole Diameter

Exact solution, equation (13)

Fit 1: Regression Y=B*X+A

Approximate solution, equation (14)

Solution for b (also denoted as the dependent variable in the figure), see Eqs. (12) and (13), in terms of e (defined in the text), a

ure dependent function. Notice the accuracy of the simple linear regression over the data range. The Taylor series approxi-

, i.e. Eq. (14), shows good accuracy for e (also denoted as the independent variable in the figure) small.
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where, e is defined as before. Further by making the reasonable approximation that
e ¼ 1

U
cwave

� ��1=2
R
h þ 1

� h
R

� �
U

cwave

� �1=2

ð16Þ
and using Eq. (14), one can split the penetration hole diameter relationship into (I) and flat plate term and

(II) a small (since we expect h=R � 1, while U=cwave ¼ Oð1Þ) curvature correction, i.e.
dhole
d

¼ 1þ
ffiffiffi
2

p
p

h
d

� �
U

cwave

� �1=2 qproj

qtarg

 !1=2

1

"
� h

R

� �
U

cwave

� �1=2
#

� 1þ
ffiffiffi
2

p
p

h
d

� �
U

cwave

� �1=2 qproj

qtarg

 !1=2

þ O
h
R

� �
U

cwave

� �1=2
" #

ð17Þ
Thus, as one might expect the effect of curvature on penetration hole diameter is small and the expe-

rientially based statement, that ‘‘curvature has a minimal impact upon penetration hole diameter’’ is seen to

be a quantitatively justified conclusion.
As a test of the conclusion that we have drawn from equation, namely that we consider several CTH

based impact simulations. Similar to Fig. 1, we consider in Fig. 4 the impact of a solid, aluminum 6061-

T6 sphere at 6.7 km/s striking a hollow, thickness 0.25 cm, aluminum 6061-T6 sphere. The CTH model

for these problems utilizes a simple Mie-Gruneisen equation of state, EOS, and an elastic–plastic

strength formulation (see Drumheller (1998) for discussion concerning EOS and strength formula-

tions). The diameter of the target sphere is varied from 4–8 cm. For reference, an aluminum 6061-T6

plate (zero curvature) is also impacted. In complete accordance with Eq. (17), inspection of Fig. 4

indicates that the effect of target curvature on penetration hole diameter is minimal for the problems
presented here, since even for impact, Fig. 4(a), the plate thickness to radius of curvature, h=R is small,

i.e. 1/8. Further simulation results for increasing h=R indicate insensitivity to target curvature. Finally,

by decreasing the radius of curvature further while keeping the thickness constant, one begins to ap-

proach the behavior a solid target and thus, it no longer makes sense to talk about plate penetration as

presented here.

Numerical values for the impact problems presented in figure are summarized in Table 1. Notice that,

as predicted by Eq. (17), that the penetration hole diameter is insensitive to the target’s radius of cur-

vature.
Fig. 4 and Table 1 combined with Eq. (17) provide a quantitative demonstration and explanation of the

minimal effect that target curvature has on plate penetration hole diameter.
3. Conclusions

To develop a quantitative explanation for the minimal effect of curvature on penetration hole size we

have developed an extension to a model developed by De Chant (2004a,b) to include the effects of body

curvature on plate penetration hole size caused by hypervelocity impact for thin plates. The effect of

curvature on penetration hole diameter is shown to scale linearly with h=R, the plate thickness to radius

of curvature ratio. Thus we confirm that for most problems where a single layer shell can be meaningfully
defined, the effect of curvature upon hole diameter is negligible.



Fig. 4. Impact of a solid, 3 cm diameter aluminum 6061-T6 sphere at 6.7 km/s striking a hollow, thickness 0.25 cm, aluminum 6061-T6

sphere. The diameter of the target sphere is varied from 4, 6 and 8 cm, corresponding to (a)–(c), respectively. For reference, see (d), an

aluminum 6061-T6 plate (zero curvature) is also impacted. Notice that the penetration hole diameter is approximately equal for all

impacts.

Table 1

Comparison between penetration hole diameter as estimated by Eq. (17) and CTH simulation

Fig. 4 reference Plate thickness/radius curvature; h=R dhole=d, Eq. (17) dhole=d; (CTH) Percent relative error

(a) 0.125 1.32 1.20 10.0

(b) 0.0833 1.34 1.25 7.2

(c) 0.0625 1.35 1.28 5.5

(d) 0.0 1.37 1.32 3.8

Agreement ranges is good for all cases and supports the conclusion that curvature has a small influence on penetration hole

diameter.

L.J. De Chant / International Journal of Solids and Structures 41 (2004) 4163–4177 4171
Acknowledgements

Encouragement from R. Schmitt, W. Erikson and E. Hertel Jr. of Sandia National Laboratory is

appreciated. The insightful comments of an anonymous reviewer are appreciated. Sandia is a multi-program



4172 L.J. De Chant / International Journal of Solids and Structures 41 (2004) 4163–4177
Laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States

Department of Energy under contract DE-AC04-94-AL85000.
Appendix A. Derivation of a hypervelocity plate penetration hole diameter relationship based on late time

stagnation point flow concepts

In this appendix we derive a plate penetration hole diameter relationship using late time (steady)

stagnation point flow concepts. This development closely parallels that provided in (De Chant, 2004a,b).

The derivation provided will be a degenerate case of the curved plate relationship developed in the text.
The flat plate penetration hole diameter solution shows good agreement with experimental data.

Starting with the system given in Eq. (1) and the nomenclature utilized in the text, we propose a solution

strategy to simplify Eq. (1) and arrive at a valid, late-time approximate solution. This simplification process

involves:

1. Solving a reduced (1-d) time dependent equation for uðx; tÞ.
2. Use the reduced solution to model the unsteady terms, e.g. ut in the more complex, original equation.

3. Solve the modified, now time independent equation.

This strategy is implemented subsequently. The methodology described here is, of course, a particular

case of a broad class of general iterative methods, Van Dyke (1975).

The appropriate, elementary model for the Eulerian treatment of high-speed flows, e.g. impact problems

consists of the linear momentum conservation equation, De Chant, 2004c and Logan (1987):
ut þ uux þ
1

q
px þ au2 ¼ 0 ðA:1Þ
where a is a damping term with units ð1=LÞ and continuity. The damping length scale described here is

related to the length scale mention previously associated with meff in Eq. (1). The 1-d unsteady continuity

equation is written:
qt þ uqx þ qux ¼ 0 ðA:2Þ

An additional relationship is designated to eliminate the pressure in terms of density and velocity by

proposing a dynamic pressure closure of the form p ¼ k0qu2. The term k0 is considered constant. Using the

form of a simple isentropic ideal gas (Whitham (1974)) one would write k0 ¼ ðcM2Þ�1
that for most high-

speed impact problems implies that k0 ¼ Oð1Þ. Note that many other materials, e.g. metals and solids

exhibit similar behavior, Drumheller (1998). Eq. (1) is then written:
ut þ uux þ k0
u2

q
qx

�
þ 2uux

�
þ au2 ¼ 0 ðA:3Þ
As stated, our goal is to develop, an approximate kinematic wave, approximation for this system. We

make the fundamental assumption that density rate of change with respect to time, qt, may be modeled as

qt � qux, a quasi-steady approximation appropriate for convection dominated flows (De Chant, 2004d).

Eq. (A.2) can now be re-written to yield:
u2

q
qx ¼ �2uux ðA:4Þ
and substituted into Eq. (A.3) gives:
ut þ uux þ au2 ¼ 0 ðA:5Þ
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Eq. (A.6) is the basic kinematic wave approximation considered in this development.

Given the initial condition, uðx; 0Þ ¼ U ¼ constant we can easily solve Eq. (A.5) using the method-of-

characteristics, MOC, i.e. du=dt ¼ �au2, along characteristics defined by dx=dt ¼ u to obtain, see Logan

(1987), Whitham (1974) and Debnath (1997):
uðx; tÞ ¼ U
1þ aUt

ðA:6Þ
and the associated characteristic equation
dx
dt

¼ uðx; tÞ ) x ¼ 1

a
lnð1þ aUtÞ ðA:7Þ
To this point it has been possible to use a set of exact (though 1-d) relationships to describe the kinematic

wave propagation within a solid. To analyze the damping term, a, it becomes necessary to invoke a series of
scaling arguments and analogies with classical viscous hydrodynamics, White (1991) and Schlicthing

(1979). Though one might be tempted to criticize the use of this analogy as somewhat less rigorous than the

preceding discussion, it is one of the goals of this discussion to show that basic fluid dynamics concepts are

applicable to the penetration problem. Justification for the use of hydrodynamic concepts in hypervelocity

impact problems is discussed in Walters and Zukas (1989) and Drumheller (1998) among others. As such,

we will invoke a series of basic length and velocity scales appropriate to this problem, by drawing upon

an analogy with classical fluid flow.

The fundamental length scale associated with the penetration problem is the plate thickness, h. If we
postulate that a � Cf=h, we then have a dimensionally consistent definition for a, written in terms of the

skin friction coefficient and plate thickness. Closure of the skin friction coefficient follows from classical

boundary layer similarity analysis. Following White (1991), Schlicthing (1979) or Hughes and Brighton

(1991) we assume that the skin friction coefficient can be written:
Cf /
uh
m

� ��m

ðA:8Þ
Then by rearrangement and through the introduction of the friction velocity definition, we write:
u
us

/ uh
m

� � m
2�m

ðA:9Þ
where us is the friction velocity ðs=qÞ1=2 and m is the kinematic viscosity:. By assuming that the velocity field
must be self-similar, e.g. u=us / u=u0 we can write:
u
u0

¼ y
h

� � m
2�m ðA:10Þ
Classically, the exponent ‘‘m’’ ranges from 0.25 to 0.5 that denote turbulent pipe flow and laminar flow,
respectively. For example, m ¼ 0:25 denote the classical 1/7 power law profile, White (1991).

How can these relationships be adapted to the penetration flow of interest? First, we identify the

appropriate velocity and length scales as being U and h. Also, we need an effective kinematic viscosity

relationship. Here we consider the dimensions of the kinematic viscosity, i.e. (velocity)(length). Addi-

tionally, we expect that it is a material property. Two obvious material velocities are: a yield velocity

ðYyield=qÞ1=2 and the sound speed velocity cwave. Though the yield velocity may be appropriate for lower

velocity impacts, we expect that hypervelocity impacts are dominated by wave propagation speeds. As such,

the effective dimensionless number for the penetration flow is simply ðu0=cwaveÞ ¼ Re. Especially near the
head of the projectile, we expect that the flow is predominantly a laminar stagnation point system with a

skin friction coefficient relationship of the form Cf ¼ const=
p
Re, White (1991) and Schlicthing (1979).
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As such, within the laminar stagnation point boundary layer region, the appropriate similarity exponent

is m ¼ 1=2.
These arguments provide closure to the skin friction relationship. We can now write:
Cf � 2
spenetration

qu20
/ u0

cwave

� ��m

ðA:11Þ
where m ranges from 1/2 to 1. To utilized Eq. (A.11) it is necessary to estimate a proportionality constant.

Since we have no further information, we make the assumption that, as in Eq. (A.10), penetration stress

spenetration is self-similar with respect to dynamic pressure, effectively setting the associated proportionality

constant to unity.

Eq. (A.6) describe the 1-d, unsteady, u ¼ uðx; tÞ, flowfield. It is not immediately apparent that the

velocity field can be written as a function of ‘‘x’’ only, but by combining Eqs. (A.6) and (A.7) to eliminate
the term 1þ aUt, we write:
uðx; tÞ ¼ Ue�ax ðA:12Þ
Direct substitution of Eq. (A.12) into Eq. (A.1) indicates that the spatial varying relationship is truly

a solution of the governing differential equation. Notice that Eq. (A.12) is completely time independent.

The significance of Eq. (A.12) will be apparent subsequently.
We will now use the reduced solution to approximate unsteady behavior in system (1) and estimate an

appropriate closure for the, as yet, unspecified effective viscosity. From the MOC solution, i.e. Eqs. (A.6)

and (A.8) a model for ut ¼ �au2 is immediately available. Finally the form of the damping term in Eq. (A.1)

suggests that a suitable approximation for the effective viscosity in Eq. (1) is meff ¼ u=a. Notice that the

velocity scale is the local velocity u rather than the initial impact velocity U and that the length scale is

specified by the damping term a. As in Eq. (A.5), the streamwise pressure gradient, px, is assumed to be

negligible. The processes of impact is dominated by flow coincident with the projectile path, as such, u � v,
the hallmark of classical boundary/thin layer behavior. Following White (1991) and Schlicthing (1979) we
neglect the plate coincident, ‘‘v’’ momentum equation and assume that uxx < uyy . These assumptions rep-

resent ‘‘standard’’ boundary layer approximations and are completely consistent with the fluid stagnation

point problem. Finally the density behavior in the mass conservation relationship is ignored. The modified

system describing the impact problem is then written:
ux þ vy ¼ 0

� au2 þ uux þ vuy ¼
u
a
uyy

ðA:13Þ
To satisfy the continuity equation a stream function variable, wðx; yÞ where u ¼ ow=oy, v ¼ �ow=ox is

defined. In a search for a self-similar solution for Eq. (A.13) we introduce the separation variable trial

solution for wðx; yÞ ¼ aðxÞf ðyÞ, in a manner completely analogous to the fluid flow stagnation problem,

White (1991). Substitution of the trial solution into the ‘‘u’’ momentum equation (recall that the continuity
equation is automatically satisfied by the stream function definition) gives:
�aa2f 02 þ aa0f 02 � a2ff 00 ¼ a2

a
f 0f 000 ðA:14Þ
For a similarity solution to exist it is necessary for Eq. (A.14) to be independent of ‘‘x’’ or ‘‘y’’. Inspection
of Eq. (A.14) will be independent of ‘‘x’’ if aa0 / a2. Notice though, that this proportionality is implied by

Eq. (A.12) the lower order solution. Applying Eq. (A.12), e.g. aa0 ¼ �aa2 or aðxÞ ¼ Ue�ax, Eq. (A.14)
becomes (strictly dependent on ‘‘y’’ only):
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f 0f 000 þ 2a2f 02 þ a2ff 00 ¼ 0 ðA:15Þ
Eq. (A.15) is the self-similar equation governing impact/penetration flow velocities. This equation is

reminiscent to the self-similar equation obtained for flow in a duct with porous walls, White (1991).

Boundary conditions are f ð0Þ ¼ 0, f 0ð0Þ ¼ 1 and f 0ð1Þ ¼ 0. Again, we emphasize the consistency between

the separation solution for aðxÞ and Eq. (A.12).

Eq. (A.15) may be solved numerically or, by approximation, analytically. Since Eq. (A.15) is already

approximate, it makes little sense to perform a precise numerical solution, especially since Dividing through
by f 0 we see that the problem is linear except for the term ff 00

f 0 . To simplify this equation we note that a

particular solution (generally not of interest since it does not satisfy the boundary conditions) of Eq. (A.15)

is f ¼ const. Substitution of this particular solution into the non-linear term yields an indeterminate

expression. If we postulate that this indeterminate expression is finite and is consistent in magnitude with

the other terms in Eq. (16) we can write ff 00

f 0 � �1. Note that one can also arrive at the closure ff 00

f 0 � �1, by

showing that a particular first order perturbation solution to ff 00 þ f 0 ¼ 0, is given by f ¼ 1� ee�x þ � � �
Utilizing the relationship ff 00

f 0 � �1, Eq. (A.15) becomes:
f 000 þ 2a2f 0 ¼ a2 ðA:16Þ
Solving Eq. (A.16) (which is non-homogeneous) gives the periodic solution f 0 ¼ c1 cos
ffiffiffi
2

p
ayþ

c2 sin
ffiffiffi
2

p
ay þ 1

2
and f ¼ c1ffiffi

2
p

a
sin

ffiffiffi
2

p
ay � c2ffiffi

2
p

a
cos

ffiffiffi
2

p
ay þ y

2
þ c3 where c1, c2 and c3 are integration constants.

Satisfaction of the boundary conditions gives:
f ¼ 1

2

1ffiffiffi
2

p
a
sin

ffiffiffi
2

p
ay

�
þ y
�

f 0 ¼ 1

2
ðcos

ffiffiffi
2

p
ay þ 1Þ

ðA:17Þ
Applying the stream function/velocity relationships we write:
w ¼ U

2
ffiffiffi
2

p
a
e�axðsin

ffiffiffi
2

p
ay þ

ffiffiffi
2

p
ayÞ

u ¼ wy ¼
U
2
e�axðcos

ffiffiffi
2

p
ay þ 1Þ

ðA:18Þ
Eq. (A.18) is the late time (time independent) solution for the velocity field associated with the pene-

tration of a thin flat plate. Eq. (A.18) contains the same information as the solution described in (De Chant,

2004a,b). For example, the radius of the penetration hole, defined as y ¼ ycrit is obtained by seeking the first
root of the velocity, i.e. uðy ¼ ycritÞ ¼ U

2
e�axðcos

ffiffiffi
2

p
aycrit þ 1Þ ¼ 0 )

ffiffiffi
2

p
aycrit ¼ p. This expression (and the

closure expression for a) immediately leads to the penetration hole diameter relationship since:
dhole
d

¼ 1þ 2ycrit ¼ 1þ
ffiffiffi
2

p
p

ad
ðA:19Þ
giving
dhole
d

¼ 1þ
ffiffiffi
2

p
p

h
d

� �
U

cwave

� �1=2

ðA:20Þ
Extension to multiple density fields (different materials for penetrator and target plate) can be accom-

modated by introducing the density scaling relationship which comes directly from elementary boundary

layer theory where density effects are included via a power-law relationship through the theoretically
consistent the Illingsworth transformation or the Chapman–Rubesin parameter, White (1991), giving
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Fig. 5. Dimensionless penetration hole diameter as a function of plate thickness/projectile diameter, comparison with experiment,

Piektukowski (1999) and correlation Maiden and McMillan (1964).
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dhole
d

¼ 1þ
ffiffiffi
2

p
p

h
d

� �
U

cwave

� �1=2 qproj

qtarg

 !1=2

ðA:21Þ
Eq. (A.21) is the goal of the analysis presented in this appendix, a relationship describing the penetration

hole diameter for a thin flat plate due to hypervelocity impact.

Comparison between the analytical result given by Eq. (A.21) and experimental measurements and
numerical simulations are given in (De Chant, 2004a,b), while here we focus on the experimental results of

Piektukowski (1999). Piektukowski (1999) provided a wealth of experimental data describing high

Hypervelocity penetration hole problems. Data trends and comparison with empirical correlations, e.g.

Maiden and McMillan (1964) are discussed in detail. Fig. 5 presents dimensionless penetration hole

diameter as a function of plate thickness/projectile diameter ratio using experimentally measured values, the

analytical model presented here, e.g. Eq. (A.21) and an empirical correlation, dhole=d ¼ 0:45Uðh=dÞ2=3 þ 0:9,
U measured in Km/s (Maiden and McMillan (1964)). Examination of Fig. 5 indicates that Eq. (A.21)

provides a good explanation for the data and provides the correct functional (linear) form. The correlation
provides a less adequate model for 0 < h=d < 0:5. The good agreement between experimental data and Eq.

(A.21) provides confidence in the methodology developed here. The good agreement with experimental

data, which is naturally 3-d, also confirms that the 2-d model developed here is completely adequate. (De

Chant, 2004c) provides an additional mathematically-based explanation for this good agreement between

2-d modeling and 3-d experimental measurements.
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